
THE DOUBLE TANGENT BUNDLE

KEATON QUINN

Abstract. The following are notes to myself on the double tangent bundle

to a smooth manifold. There are currently no citations included but I make

no claim that anything listed here is my original work.

1. Introduction

Theorem. Suppose f : M → N is a smooth map. Then df : TM → TN is also a
smooth map with derivative

d(df)(p,v)(x, y) = (dfp(x), dfp(y) +∇(df)p(v, x)).

In the case that N = R, the total covariant derivative ∇(df) reduces to the
Hessian of the function f .

Corollary. If f : M → R is smooth function then

df(p,v)(x, y) = (dfp(x), dfp(y) + Hess(f)p(v, x)).

Say f : Σ → M is an immersion and V is a vector field along on Σ with values
in TM , that is, V is a section of f∗TM . Then a map F : Σ→ TM can be made by
F (x) = (f(x), V (x)) and its derivative is related to the pullback of the connection
on M .

Theorem. The derivative dFx : TxΣ→ T(f(x),V (x))(TM) is given by

dFx(u) = (dfx(u), (f∗∇)uV (x)).

This can be made more precise when M carries a Riemannian metric and the
vector field V is normal to the the surface Σ.

Corollary. Suppose f : Σ → M is an isometric immersion and suppose Σ has
a unit normal vector field N . Then the map F (x) = (f(x), N(x)) gives a map
F : Σ→ TM and its derivative at a point x is

dFx(u) = (dfx(u),−dfx(Bu)).

Several constructions related to the tangent bundle of a Riemannian manifold
preserve the norms of vectors, and so if a vector starts out with unit length, it will
stay unit length. It is natural, then, to consider the unit tangent bundle UM →M
of all unit vectors tangent to the manifold. As UM sits inside the tangent bundle
as an embedded submanifold, the tangent spaces to UM inherit a splitting from
the connection on TM .
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Lemma. The tangent space to UM at (p, v) is given by

T(p,v)UM = H(p,v)(TM)⊕ v⊥

and the tangent space to TM can be written as

T(p,v)TM = H(p,v)TM ⊕ v⊥ ⊕ 〈v〉.

where 〈v〉 is the span of v in TpM .

The exponential map exp : TM → M sends a point (p, v) to the point in M a
unit distance away from p along the geodesic emanating from p in the direction v.
Its derivative is related to the variation field of a variation through geodesics.

Theorem. The derivative of the exponential map is given by

d exp(p,v)(x, y) = J(1)

where J(t) is the unique Jacobi field along expp(tv) with J(0) = x and DtJ(0) = y.

The geodesic flow is the map gt : UM → UM that is the flow of the geodesic
vector field G : UM → T (UM) given by G(p, v) = (v, 0). This flow is given in terms
of the exponential map by gt(p, v) = (expp(tv), ∂t expp(tv)) and its derivative can
also be computed using Jacobi fields.

Theorem. The derivative of the geodesic flow gt : TM → TM is given by

d(gt)(p,v)(x, y) = (J(t), DtJ(t)).

where J(t) is the unique Jacobi field along expp(tv) with J(0) = x and DtJ(0) = y.

Returning to the unit normal lift F : Σ → UM , we can compose this with
the geodesic flow to get surfaces parallel to the original Σ. The derivative of this
composition is computed using the chain rule.

Theorem. Let Ft = gt ◦ F : Σ→ UM . Then the derivative is

d(Ft)x(u) = (J(t), DtJ(t))

where J(t) is the unique Jacobi field along expf(x)(tN(x)) with J(0) = dfx(u) and

DtJ(0) = −dfx(Bu)) for B the shape operator of Σ in M . If ft = π ◦ Ft, then

d(ft)x(u) = J(t).

Using this derivative, the induced metric It = f∗t g can be computed in terms
of Jacobi fields and the time derivative of It at t = 0 is related to the second
fundamental form of the immersion f .

Theorem. Let f : Σ→M be an immersed hypersurface and let N be a unit normal
vector field on Σ. Then for the induced metric on the parallel surface a distance t
away from Σ in the direction N we have

d

dt
It|t=0 = −2II.

where II is the second fundamental form of the immersion f with respect to N .

The tangent bundle TM (and hence UM) inherits a Riemannian metric from
(M, g) called the Sasaki metric ĝ. The pullback of this metric via the unit normal
immersion F : Σ→ UM is related to the geometry of f : Σ→M .



THE DOUBLE TANGENT BUNDLE 3

Theorem. Let F : Σ→ UM by F (x) = (f(x), N(x)) be a unit normal immersion
into the unit tangent bundle of a manifold with metric g. Let ĝ be the Sasaki metric
on UM and call the induced metric Î = F ∗ĝ. Then

Î = I + III

where I is the induced metric f∗g on Σ and III is the third fundamental form.

1.1. Hyperbolic Space. When M = Hn, the above formulas can be made more
explicit.

Theorem. Let gt : UHn → UHn be the geodesic flow. The derivative is given by

d(gt)(p,v)

(
x
y

)
=

(
cosh(t)x+ sinh(t)y + sinh(t)〈x, v〉p
sinh(t)x+ cosh(t)y − sinh(t)〈x, v〉v

)
,

with respect to the splitting T (THn) = H ⊕ V .

From the model of hyperbolic space as the hyperboloid in Minkowski space, there
is a map UHn → TdSn from the unit tangent bundle of hyperbolic space to the
tangent bundle of de Sitter space. The map is simply (p, v) 7→ (v, p), which uses
the fact that each are submanifolds of Minkowski space, and so tangent vectors can
be identified with actual vectors in Minkowski space.

Theorem. Let i : UHn → TdSn be given by i(p, v) = (v, p). Then with respect to
the splitting of the double tangent bundle of both Hn and dSn into horizontal and
vertical bundles (via the metrics induced from Minkowski space), we can write the
derivative as

di(p,v)

(
x
y

)
=

(
y + 〈x, v〉p
x− 〈x, v〉v

)
Via this map, the unit tangent bundle of hyperbolic space inherits a metric from

the Sasaki metric of de Sitter space.

Lemma. Let ĝdS be the Sasaki metric on TdSn. Then

i∗(ĝdS)((x, y), (u,w)) = 〈x, y〉 − 2〈x, v〉〈u, v〉+ 〈y, w〉
= ĝH((x, y), (u,w))− 2〈x, v〉〈u, v〉,

where ĝH is the Sasaki metric on UHn.

Also from this map, we get dual surfaces in de Sitter space from unit normal
immersions in hyperbolic space. If F : Σ→ UHn is a unit normal immersion, then
F ∗ = i ◦ F and f∗ = π ◦ F ∗ give maps Σ→ TdSn and Σ→ dSn, respectively. The
geometry of these dual surfaces is related to the originals.

Lemma. The derivative of F ∗ is given by

dF ∗x (u) =

(
−dfx(Bu)
dfx(u)

)
,

and the derivative of f∗ is

df∗x(u) = −dfx(Bu).

With these derivatives the induced metrics can be computed.
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Theorem. Let f : Σ → Hn be a map and F : Σ → UHn via F (x) = (f(x), N(x))

be a unit normal immersion. Then the metrics I∗ and Î∗ on Σ obtained by pulling
back the metric on dSn or the Sasaki metric on TdSn, respectively, are given by

Î∗ = I + III,

and

I∗ = III

From a unit normal immersion into hyperbolic space we get parallel copies of
the surface as described above. In the hyperbolic setting, the there is an explicit
description of the metrics It.

Theorem. Let f : Σ → Hn be an immersion with unit normal vector field N and
shape operator B. Define ft(x) = π ◦ gt(f(x), N(x)), then the image of ft is a
surface a distance t away from Σ and has in induced metric

It(u,w) = I((cosh(t)Id− sinh(t)B)u, (cosh(t)Id− sinh(t)B)w)

and shape operator

Bt = −(cosh(t)Id− sinh(t)B)−1(sinh(t)Id+ cosh(t)B).

2. Structure of the double tangent bundle

Let M be a smooth manifold and let π : TM → M be its tangent bundle. The
total space TM is itself a manifold twice the dimension of M . It is defined as the
(disjoint) union of the tangent spaces to M , i.e,

TM =
⋃
p∈M

TpM.

An element of TM looks like (p, v) where p ∈ M and v ∈ TpM . The projection
π : TM → M is π(p, v) = p. The tangent bundle records derivatives of maps
R → M (as opposed to the cotangent bundle that records derivatives M → R). If
γ : I →M is a smooth map through the point p ∈M , then dγ0(∂t) = γ′(0) ∈ TpM .

But what about second derivatives? That is, suppose γ : I → M is a smooth

path through p. What is d2

dt2 γ(0)? For each t, the derivative γ′(t) lives in a different
tangent space. So, to consider this as a path in a smooth manifold (so that we may
take another derivative), we think of it as as (γ(t), γ′(t)), which is a smooth path
in TM . We then interpret the second derivative of γ as d

dt (γ(t), γ′(t)) at t = 0.
This is a tangent vector to TM at (p, γ′(0)), i.e., an element of T (TM), the tangent
bundle of the tangent bundle of M .

If we start at a point (p, v) in TM and try moving, there are two distinguished
ways to do so. We could move along the base manifold M or move within the fibers
of π : TM → M , meaning move within the tangent spaces. Usually both motions
will happen at the same time. So we expect T(p,v)TM to decompose, in some sense,
into directions tangent to the base M and directions tangent to the fibers.

To find the tangent vectors in the direction of the fibers take a path γ(t) =
(p, v(t)) completely within TpM ⊂ TM starting at (p, v). Then since π(γ(t)) = p
for all t, we see dπ(p,v)(γ

′(t)) = 0, or that γ′(t) is in the kernel of dπ. And indeed,
the tangent space to the fiber TpM is the kernel of dπ(p,v). Since π is a submersion
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(given v ∈ TpM , the tangent vector to (γ(t), γ′(t)) maps to v for any curve γ in M
with γ′(0) = v), by the regular value theorem we have

ker dπ(p,v) = T(p,v)π
−1(p) = T(p,v)TpM.

We define the vertical tangent space at (p, v) ∈ TM to be

V(p,v) = ker dπ(p,v) = T(p,v)TpM ' TpM.

It consists of all directions tangent to the fiber and is canonically isomorphic to the
fiber itself (since the tangent spaces to a vector space are canonically isomorphic
to the vector space). Note that this vertical space can be defined for any smooth
manifold and does not depend on the geometry in any way.

We expect that the remaining vectors in T(p,v)TM should represent motion along
the base, and indeed we have

T(p,v)TM/V(p,v) ' im dπ(p,v) = TpM.

This information can be packaged together into the short exact sequence of vector
spaces

0→ V(p,v) → T(p,v)TM → TpM → 0,

which comes from the short exact sequence of vector bundles on TM

0→ V → T (TM)→ π∗TM → 0.

However, this sequence does not canonically split.
A connection on TM is a choice of splitting of T (TM) = H ⊕ V for a smooth

family of subspaces H complementary to V in the sense that T(p,v)TM = H(p,v) ⊕
V(p,v). This H(p,v) is called the horizontal tangent space at (p, v), and indeed this
space represents motions in TM along M since

H(p,v) ' T(p,v)TM/V(p,v) ' TpM,

the isomorphism H → TM given by dπ. The connection is called linear if it is
invariant under scalar multiplication on the Tangent bundle. That is, let r ∈ R and
Lr : TM → TM be given by Lr(p, v) = (p, rv). Then the connection is linear if

H(p,rv) = d(Lr)(p,v)(H(p,v)).

A right splitting j : π∗TM → T (TM) of the short exact sequence 0 → V →
T (TM) → π∗TM → 0 let’s us write T(p,v)TM = j(p,v)(TpM) ⊕ V(p,v), and so
H = j(π∗TM) defines a connection. A left splitting k : T (TM)→ V is a projection
onto the vertical space, and a connection can be defined as H = ker k. Note
that either splitting gives the other, and the resulting connection will be linear if
the splitting maps are invariant under scalar multiplication (CHECK THIS). And
to reiterate, there are many connections on TM , but no canonical one without
introducing more structure on M .

Now, suppose we have chosen a linear connection on TM . Then since V(p,v) '
TpM (canonically) and since H(p,v) ' TpM by dπ(p,v) we have that

T(p,v)TM ' TpM ⊕ TpM,

given by the isomorphism that sendsW ∈ T(p,v)TM to (dπ(p,v)(W ), k(W )) ∈ TpM⊕
TpM , where k is the corresponding left splitting given by the connection.
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3. Covariant Derivatives

3.1. Covariant derivatives. Take a curve α : (−1, 1)→ TM by α(t) = (γ(t), V (t))
starting at (p, v). Then α′(0) = dα0(∂t) ∈ T(p,v)TM ' TpM ⊕TpM . The first com-
ponent of this tangent vector is given by

dπ(p,v)(α
′(0)) =

d

dt
π(α(t))|t=0 =

d

dt
γ(t)|t=0 = γ′(0).

So we see explicitly that the horizontal component of a tangent vector to TM
represents motion along the base. The second component is given by

k(α′(0)) = k ◦ dα0(∂t)

Therefore, using k we can talk about derivatives of tangent vectors on M .
Let Y : M → TM be a vector field so that π ◦ Y = Id. Then its derivative is a

map dY : TM → T (TM). Using the decomposition of the double tangent bundle,
the derivative of Y at p ∈M in the direction x ∈ TpM can be computed by

dYp(x) = (x, k ◦ dY (x)).

So k ◦ dY carries all the information about the derivative of Y . The covariant
derivative of the vector field Y with respect to (or in the direction of) the vector
field X is another vector field ∇XY given by

∇XY (p) = k ◦ dYp(Xp).

A connection on TM more frequently refers to this ∇ than to the splitting H.

3.2. Covariant derivatives along curves. (ADD EXPOSITION ABOUT VEC-
TOR FIELDS ALONG CURVES) Let γ : (−1, 1) → M be a curve and consider
the pullback bundle γ∗TM whose fiber over t ∈ (−1, 1) is the vector space Tγ(t)M .
Put another way

γ∗TM = {(t, v) | γ(t) = π(v)} ⊂ (−1, 1)× TM.

There is a natural pushforward γ∗ : γ∗TM → TM (note: not the derivative) given
by γ∗(t, v) = (γ(t), v). Since γ∗TM ⊂ (−1, 1) × TM , we have that T(t,v)γ

∗TM ≤
Tt(−1, 1) ⊕ H(γ(t),v) ⊕ V(γ(t),v). If (t(s), V (s)) is a path in this pullback bundle
starting at (t, v) with an initial velocity (a∂t, x, y), then from the condition γ(t(s)) =
π(V (s)) and taking an s-derivative at s = 0, we see that aγ′(t) = dγt(a∂t) =
dγt(t

′(0)) = dπ(γ(t),v)(x, y) = x. Consequently, the tangent space is identified as

T(t,v)γ
∗TM = {(a∂t, aγ′(t), y) | a ∈ R and y ∈ Tγ(t)M}.

Since γ∗(t, v) = (γ(t), v), its derivative is d(γ∗)(t,v)(a∂t, aγ
′(t), y) = (aγ′(t), y).

The bundle projection π1 : γ∗TM → (−1, 1) is just projection onto the first
component: π1(t, v) = t, and so its derivative is d(π1)(t,v)(a∂t, aγ

′(t), y) = a∂t. The
vertical bundle of γ∗TM is then given by

V ∗(t,v) = ker d(π1)(t,v) = {(0, 0, y)}.

and note that dγ∗ sends (0, 0, y) 7→ (0, y), preserving vertical vectors, i.e, it maps
V ∗ to V . If k∗ : T (γ∗TM) → V ∗ is the corresponding projection to the vertical
space, then we see

dγ∗ ◦ k∗ = k ◦ dγ∗.
and therefore the induced connection {a(∂t, γ

′(t), 0)} is mapped to the horizontal
space H by dγ∗.
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From this induced connection is an induced covariant derivative Dt = γ∗∇ that
acts on section of γ∗TM . If V ∈ Γ(γ∗TM) is a vector field along γ, then the
covariant derivative of V along γ is

DtV = (γ∗∇)∂tV = k∗ ◦ dV (∂t).

While DtV is another section of γ∗TM we will frequently use the same notation to
also refer to dγ∗ ◦DtV in TM .

If V is extendible, meaning if V (t) = (t, Vt) and Vt = Ṽγ(t) ∈ Tγ(t)M for a vector

field Ṽ on M , then DtV is related to ∇γ′(t)Ṽ . Indeed

Lemma. If V is an extendible vector field along the curve γ, then for every exten-
sion Ṽ of V ,

DtV = ∇γ′(t)Ṽ .

after identifying the fibers of the pullback bundle with the fibers of TM via dγ∗.

Proof. If Ṽ is an extension of V and if V (t) = (t, Vt) and Ṽ (t) = (γ(t), Ṽγ(t)), then

γ∗ ◦ V = Ṽ ◦ γ. This implies that

d(γ∗)V (t) ◦ dVt = dṼγ(t) ◦ dγt.
Together with dγ∗ ◦ k∗ = k ◦ dγ∗ we compute

d(γ∗)V (t) ◦DtV = d(γ∗)V (t) ◦ k∗ ◦ dVt(∂t)
= k ◦ d(γ∗)V (t) ◦DVt(∂t)

= k ◦ dṼγ(t) ◦ dγt(∂t)

= k ◦ dṼγ(t)(γ
′(t))

= ∇γ′(t)Ṽ .

�

Using this induced covariant derivative we can now compute the derivative of
the curve α(t) = (γ(t), V (t)) in T (TM).

Theorem. Let α : (−1, 1) → TM be a smooth path given by α(t) = (γ(t), V (t))
and starting at (p, v). Then

α′(0) = (γ′(0), DtV (0)) ∈ T(p,v)TM

Proof. We’ve already seen the horizontal component is given by γ′(0) and the ver-
tical component is k ◦ dα0(∂t). If we interpret V as a section of γ∗TM given by
(abusing notation) V (t) = (t, V (t)), then γ∗ ◦ V = α. So,

k ◦ dα0(∂t) = k ◦ d(γ∗)(0,v) ◦ dV0(∂t)

= d(γ∗)(0,v) ◦ k∗ ◦ dV0(∂t) = d(γ∗)(0,v)(DtV (0)) ' DtV (0),

as claimed. �

To expand on this, if α(t) = (γ(t), V (t)) is a curve in TM with α(0) = (p, v) and
α′(0) = (x, y) ∈ H ⊕ V , then γ′(0) = x and DtV (0) = y. This helps us compute
the derivative of functions defined on TM . Suppose F : TM → N is a smooth
map and we want to compute dF(p,v)(x, y). Then take a curve α(t) = (γ(t), V (t))
starting at (p, v) with γ′(0) = x and DtV (0) = y. Then

dF(p,v)(x, y) =
d

dt
F (α(t))|t=0 =

d

dt
F (γ(t), V (t))|t=0 .
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3.3. Parallel transport. Let γ be a curve in M . If we wanted to compute γ′′(t)
using a difference quotient we would need to compute the difference γ′(t+h)−γ′(t),
but these two vectors live in different tangent spaces. If we had a way to move
γ′(t+h) back into Tγ(t)M then we could perform the subtraction. Moving γ′(t+h)
is moving a vector within TM , and to get an ‘accurate’ representation of this vector
in Tγ(t)M we don’t want any of this motion to happen in the fiber directions. So, if
for s ∈ [0, 1] we have (γ(s), V (s)) is the desired path in TM such that V (0) = γ′(t)
and V (1) = γ′(t+ h) then we want this be horizontal. That is, we want DsV = 0
for all s ∈ [0, 1]. Such a path is called a parallel transport of γ′(t) along γ. The
following theorem shows that given any v ∈ TPM and γ : [0, 1] → M a curve
starting at p, then we can parallel transport v along γ.

Theorem (Parallel Transport). Let p and q be two points in M and suppose γ :
[0, 1] → M is a path starting at p and ending at q. Then for any v ∈ TpM there
exists a unique vector field V along γ such that V (0) = v and DtV = 0 for all t.

Proof. Again, consider the pullback bundle γ∗TM . Define the parallel transport
vector field P : γ∗TM → T (γ∗TM) by P (t, w) = (∂t, γ

′(t), 0) and note this is a
horizontal vector field. Let α(s) = (t(s), V (s)) be an integral curve of this vector
field through the point (t, v). Then we have

(t′(s)∂t, t
′(s)γ′(t(s)), DsV (s)) = α′(s) = P (α(s)) = (∂t, γ

′(t(s)), 0)

so that t(s) = t + s. Hence α(s) = (t + s, V (s)) where DsV = 0 and V (0) = v.
This is the unique integral curve of P through (t, v) defined on some small interval
around s = t, i.e., on (t− εt, t+ εt) for εt > 0.

For reasons I haven’t quite worked out yet, the integral curve starting at (0, v)
exists for all s ∈ [0, 1]. Another way to phrase this is that P is a complete vector
field. Should be able to show P is a system of linear ODEs in charts and then just
apply the ODE theorem as usual. �

Parallel transport can be used to connect nearby tangent spaces.

Theorem. Let γ be a curve in M , then for each t and s in the domain of γ, there
exists a linear isometry P (γ)st : Tγ(t)M → Tγ(s)M given by

P (γ)st (v) = V (1),

where V is the parallel transport of v along γ restricted to the interval with endpoints
t and s.

Note that P (γ)ts is the inverse of P (γ)st . This parallel transport map is used to
compute the derivative of tangential objects. For example,

Theorem. Let γ be a curve in M , then d2

d2 γ(t) = (γ′(t), Dtγ
′(t)) and

Dtγ
′(t) = lim

h→0

P (γ)tt+h(γ′(t+ h))− γ′(t)
h

.

3.4. Derivatives of functions. Suppose f : M → N is a smooth map between
manifolds. Then its differential df : TM → TN is given by df(p, v) = (f(p), dfp(v)).
We therefore have another derivative d(df) : T (TM) → T (TN), the derivative of
the differential (note: this is not the exterior derivative applied twice, which would
be zero). The differential df more naturally takes values in the pullback bundle
f∗TN , meaning itself is a section of the bundle T ∗M ⊗ f∗TN ' Hom(TM, TN)
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over M . Suppose M has a connection ∇M and N has a connection ∇N , then the
bundle Hom(TM, TN) has the induced connection ∇ = (∇M )∗ ⊗ ∇N , and with
connection we can compute the derivative of df .

Theorem. Suppose f : M → N is a smooth map. Then

d(df)(p,v)(x, y) = (dfp(x), dfp(y) +∇(df)p(v, x)).

Proof. Let α(t) = (γ(t), V (t) be a curve in TM such that α(0) = (p, v) and α′(0) =
(x, y). Recall this means γ′(0) = x and DtV (0) = y. Now we can compute

d(df)(p,v)(x, y) =
d

dt
df(γ(t), V (t))|t=0

=
d

dt
(f(γ(t)), dfγ(t)(V (t)))

∣∣
t=0

= (dfp(γ
′(0)), Dt′(dfγ(t)(V ))(0))

where Dt′(dfγ(t)(V )) is the covariant derivative of the vector field dfγ(t)(V (t)) along
the curve f ◦ γ.

By definition,

∇(df)(Y,X) = (∇Xdf)(Y ) = (f∗∇)Xdf(Y )− df(∇XY ),

which implies that

(f∗∇)Xdf(Y ) = df(∇XY ) +∇(df)(Y,X).

Now take X = γ′, then ∇XY = DtY and since Y is defined on all of M , we have

(f∗∇)γ′df(Y ) = γ∗(f∗∇)∂t(df(Y ) ◦ γ)

= (f ◦ γ)∗∇∂t(df(Y ) ◦ γ) = Dt′df(Y ),

i.e., the covariant derivative of df(Y ) along f ◦ γ. Now take Y = V along γ, we get

Dt′df(V ) = dfγ(t)(DtV ) +∇(df)(v, γ′).

At t = 0 this reads

Dt′df(V )(0) = dfp(y) +∇(df)(v, x),

which gives the result. �

The total covariant derivative ∇(df) is also called the second fundamental form
of f , and indeed, if f : M → N is an isometric immersion of Riemannian manifolds,
then ∇(df) = II. This follows from the Gauss Formula

(f∗∇)Xdf(Y ) = df(∇XY ) + II(X,Y ).

If f is a totally geodesics mapping of Riemannian manifolds, then∇(df) = 0. To see
this, take any (p, v) ∈ TM and geodesic at p in the direction v, then the covariant
derivative of df(γ′) along f ◦γ is Dt′(f ◦γ)′ = 0, since f ◦γ is also a geodesic. Then

0 = Dt′(f ◦ γ)′ = df(Dtγ
′) +∇(df)(γ′, γ′) =⇒ ∇(df)(γ′, γ′) = 0.

At t = 0 this gives ∇(df)(v, v) = 0 and, since v was arbitrary, ∇(df) = 0. In
particular, any isometry f : M →M also has ∇(df) = 0 since it is totally geodesic.
This also shows any totally geodesic map is a harmonic map since tr(∇(df)) =
tr(0) = 0. So all isometries of a Riemannian manifold are harmonic.

In the special case of N = R the total covariant derivative of df is called the
Hessian, so we have the following.
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Corollary. If f : M → R is smooth function then

df(p,v)(x, y) = (dfp(x), dfp(y) + Hess(f)p(v, x)).

From inspection, we can interpret this as saying the Hessian of a smooth function
measures the change in df along the base manifold and since dfp is linear, the change
of df in the fiber directions is just itself.

Now suppose f : Σ→M is a hypersurface and V is a vector field along Σ. Then
F (x) = (f(x), V (x)) gives a map into the tangent bundle F : Σ→ TM .

Theorem. The derivative dFx : TxΣ→ T(f(x),V (x))(TM) is given by

dFx(u) = (dfx(u), (f∗∇)uV (x)).

Proof. The hypersurface Σ comes equipped with the induced pullback connection
f∗∇. If γ is a curve in Σ starting at x in the direction u then

dFx(u) =
d

dt
F (γ(t))|t=0 =

d

dt
(f(γ(t)), V (γ(t))|t=0 = (dfx(u), Dt(V ◦ γ))(0))

where Dt(V ◦γ) is the covariant derivative of the vector field V along γ with respect
to the pullback connection. Since V ◦ γ is extendible,

Dt(V ◦ γ) = (f∗∇)γ′V.

Evaluating at t = 0 gives the result. �

If M has a Riemannian metric and Σ the pullback metric, then the special case
when V is orthogonal to df(TΣ) deserves attention. If V is a unit normal vector field
on Σ, then the second fundamental form may be defined from the Gauss equation.
The shape operator B is then defined and the Weingarten equation relates these
objects: (call V = N now)

(f∗∇)uN = −dfx(Bu).

In particular,

Corollary. Suppose f : Σ → M is an isometric immersion and suppose Σ has
a unit normal vector field N . Then the map F (x) = (f(x), N(x)) gives a map
F : Σ→ TM and its derivative is

dFx(u) = (dfx(u),−dfx(Bu)).

4. Riemannian Manifolds

Suppose M has a Riemannian metric g. Then there is a unique torsion free
connection on M such that is also metric, i.e.,

d g(X,Y ) = g(∇X,Y ) + g(X,∇Y ).

4.1. The Unit Tangent Bundle. Inside TM sits the unit tangent bundle UM
which consists of all tangent vectors of length 1. The unit tangent bundle is itself a
bundle over M with the same projection map. Since UM lives inside TM we know

T(p,v)UM ≤ H(p,v)(TM)⊕ V(p,v)(TM).

So take (x, y) a tangent vector to UM and a curve α(t) = (γ(t), V (t)) in UM with
α′(0) = (x, y). This means DtV (0) = y. From 1 = g(V, V ) we compute

0 =
d

dt
g(V, V ) = 2g(DtV, V ).
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Hence DtV is orthogonal to V , and at t = 0 this gives y ⊥ v. Also, the vertical
bundle of UM is

V(p,v)UM = ker dπ(p,v) = T(p,v)UpM = v⊥.

So we have
T(p,v)UM ≤ H(p,v)(TM)⊕ v⊥

This is actually an equality. Suppose (x, y) is tangent to TM at (p, v) and that
y ⊥ v. Let (γ(t), V (t)) be a curve in TM whose initial velocity is (x, y). Since
v 6= 0, for t in some small interval containing 0, we know V (t) 6= 0. We can define
W (t) = V (t)/|V (t)|, and note that (γ(t),W (t)) is a path in UM . Moreover, the
initial velocity to this curve is also (x, y). To see this note that W = g(V, V )−1/2V
and so

DtW = −1

2
g(V, V )−3/2 · 2g(DtV, V ) · V + g(V, V )−1/2DtV.

At t = 0 this gives DtW (0) = y since DtV (0) = y and since y is orthogonal to v.
Hence

Lemma. The tangent space to UM at (p, v) is given by

T(p,v)UM = H(p,v)(TM)⊕ v⊥

and the tangent space to TM can be written as

T(p,v)TM = H(p,v)TM ⊕ v⊥ ⊕ 〈v〉.
where 〈v〉 is the span of v in TpM .

4.2. The Sasaki Metric. Since both the horizontal space and vertical space are
copies of TpM , we can place a inner product on T(p,v)TM by using gp on each copy
of TpM and making the horizontal and vertical spaces orthogonal to each other.
The Sasaki Metric ĝ is this metric, it is a Riemannian metric on TM (and induces
one on UM) and is given by

ĝ(p,v)((x, y), (u,w)) = gp(x, u) + gp(y, w).

If α(t) = (γ(t), V (t)) is a path in TM , then

|α′|2ĝ = |γ′|2g + |DtV |2g.

4.3. Geodesics. The Geodesic vector field is the horizontal vector field on the
tangent bundle G : TM → T (TM) given by

G(p, v) = (v, 0).

If α(t) = (γ(t), V (t)) is an integral curve of G, then

(γ′(t), DtV (t)) = α′(t) = G(α(t)) = G(γ(t), V (t)) = (V (t), 0).

Hence, V (t) = γ′(t) and Dtγ
′ = DtV = 0.

Lemma. The (projections of the) integral curves of G are called geodesics and they
are given by

γ̃(t) = (γ(t), γ′(t)) such that Dtγ
′ = 0.

If γ is a geodesic then note that ∂t|γ′|2 = 2g(Dtγ
′, γ′) = 0 so that |γ′| is constant.

We can assume γ has been parametrized so that |γ′(0)| = 1, in which case we see
the integral curves of G are paths in UM . Indeed we can consider the geodesics
vector field as a unit vector field on TM and its Sasaki norm is |G|ĝ = 1.
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4.4. The exponential map. The exponential map on M is the map exp : TM →
M by

exp(p, v) = expp(v) = γ(1),

where γ is the unique geodesic starting at p in the direction v.
We can compute d exp(p,v) : T(p,v)TM → Texpp(v)M using Jacobi fields.

Theorem. The derivative of the exponential map is given by

d exp(p,v)(x, y) = J(1)

where J(t) is the unique Jacobi field along expp(tv) with J(0) = x and DtJ(0) = y.

Proof. Take a path in TM by α(s) = (γ(s), V (s)) such that α′(0) = (γ′(0), DsV (0)) =
(x, y). Consider the variation through geodesics given by

Γ(s, t) = expγ(s)(tV (s)).

Then there exists a unique Jacobi field J(t) = ∂sΓ(0, t) along Γ(0, t) = expp(tv)
such that J(0) = x and DtJ(0) = y. We can then compute

d exp(p,v)(x, y) =
d

ds
exp(α(s))|s=0

=
d

ds
expγ(s)(1 · V (s))

∣∣∣
s=0

=
d

ds
Γ(s, 1)|s=0

= ∂sΓ(0, 1)

= J(1).

�

4.5. The Geodesic Flow. The flow gt of the geodesic vector field G is called the
geodesic flow. So, gt : TM → TM by gt(p, v) = (γ(t), γ′(t)) for γ the unique
geodesic starting at p in the direction v. Equivalently

gt(p, v) = (expp(tv), ∂t expp(tv)).

Theorem. The derivative of the geodesic flow gt : TM → TM is given by

d(gt)(p,v)(x, y) = (J(t), DtJ(t)).

where J(t) is the unique Jacobi field along expp(tv) with J(0) = x and DtJ(0) = y.

Proof. Take α(s) = (γ(s), V (s)) a curve in TM with γ′(0) = x and DsV (0) = y
and again form the variation through geodesics Γ(s, t) = expγ(s)(tV (s)) which has

Jacobi field J(t) = ∂sΓ(0, t) satisfying J(0) = x and DtJ(0) = y. We can compute

d(gt)(p,v)(x, y) =
d

ds
gt(α(s))

∣∣
s=0

=
d

ds
(expγ(s)(tV (s)), ∂t expγ(s)(tV (s)))

∣∣∣
s=0

= (J(t), Ds∂t expγ(s)(tV (s)))
∣∣∣
s=0

,
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where the covariant derivative is along expγ(s)(tV (s)). Now the symmetry lemma
gives

Ds∂t expγ(s)(tV (s))
∣∣∣
s=0

= Ds∂tΓ(s, t)|s=0

= Dt∂sΓ(s, t)|s=0

= Dt∂sΓ(0, t)

= DtJ(t),

as claimed. �

Note that g0(p, v) = (p, v) and indeed we have d(g0)(p,v)(x, y) = (J(0), DtJ(0)) =
(x, y).

4.6. Parallel Surfaces. Now assume again that F : Σ→ UM by F (x) = (f(x), N(x))
is the lift of a hypersurface f : Σ → M to the unit tangent bundle. We can
then consider the parallel surface Σt a distance t away from Σ in UM by taking
F t = gt ◦ F : Σ→M .

Theorem. Let F t = gt ◦ F : Σ→ UM . Then the derivative is

d(F t)x(u) = (J(t), DtJ(t))

where J(t) is the unique Jacobi field along expf(x)(tN(x)) with J(0) = dfx(u) and

DtJ(0) = −dfx(Bu)) for B the shape operator of Σ in M .

Proof. Recall that dFx(u) = (dfx(u),−dfx(Bu)). Then since d(F t)x(u) = d(gt)F (x)◦
dFx(u) we get from the result from the above theorem. �

If we now consider f t = π ◦ F t : Σ → M then we get a parallel copy of Σ a
distance t away. This copy has its own induced metric It = (f t)∗g and I0 = I = f∗g.
We can compute the derivative of this family It with respect to t.

Theorem. Let f : Σ→M be an immersed hypersurface and let N be a unit normal
vector field on Σ. Then for the induced metric on the parallel surface a distance t
away from Σ in the direction N we have

d

dt
It|t=0 = −2II.

where II is the second fundamental form of the immersion f with respect to N .

Proof. From the previous theorem we have that d(f t)x(u) = J(t) where J is
the unique Jacobi field along expf(x)(tN(x)) with J(0) = dfx(u) and DtJ(0) =

−dfx(Bu). Let d(f t)x(w) = W (t) with similar conditions on the Jacobi field W .
Then

It(u,w) = g(d(f t)x(u), d(f t)x(w)) = g(J(t),W (t)).

Taking the derivative with respect to time gives

d

dt
It(u,w) =

d

dt
g(J(t),W (t)) = g(DtJ,W ) + g(J,DtW ).
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At t = 0 this becomes

d

dt
It(u,w)|t=0 = g(−dfx(Bu), dfx(w)) + g(dfx(w),−dfx(Bw))

= −I(Bu,w)− I(u,Bw)

= −2I(Bu,w)

= −2II(u,w).

�

The second derivative can also be computed by using the Jacobi equation

Theorem. Let f : Σ→M be an immersed hypersurface and let N be a unit normal
vector field on Σ. Then the induced metric on the parallel surface a distance t away
from Σ in the direction N we have

d2

dt2
It|t=0 = 2III(u,w)− 2R̃m(dfx(u), N(x), N(x), dfx(w)).

where III is the third fundamental form of the immersion f with respect to N and

R̃m is the Riemann curvature tensor of g.

The unit tangent bundle has the Sasaki metric and so given a unit normal im-
mersion F : Σ→ UM by F (x) = (f(x), N(x)) we can computed the induced metric
on Σ.

Theorem. Let F : Σ→ UM by F (x) = (f(x), N(x)) be a unit normal immersion
into the unit tangent bundle of a manifold with metric g. Let ĝ be the Sasaki metric
on UM and call the induced metric Î = F ∗ĝ. Then

Î = I + III

where I is the induced metric f∗g on Σ and III is the third fundamental form.

Proof. Recall the derivative of F is dFx(u) = (dfx(u),−dfx(Bu)). Then

F ∗ĝ(u,w) = ĝ(dFx(u), dFx(w))

= ĝ((dfx(u),−dfx(Bu)), (dfx(w),−dfx(Bw)))

= g(dfx(u), dfx(w)) + g(−dfx(Bu),−dfx(Bw))

= I(u,w) + I(Bu,Bw)

= I(u,w) + III(u,w).

�

5. Hyperbolic Space

Minkowski space Rn,1 is just Rn+1 with the Minkowski metric

〈x, y〉 = x1y1 + · · ·+ xnyn − xn+1yn+1,

a scalar product of signature (n, 1). Hyperbolic space sits inside of Minkowski space
as the upper portion of the hyperbola of two sheets:

Hn = {p ∈ Rn,1 | 〈p, p〉 = −1, and pn+1 > 0}.
De Sitter space is the unit sphere in the Minkowski metric:

dSn = {v ∈ Rn,1 | 〈v, v〉 = 1}.
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Since both of these spaces are level sets of 〈·, ·〉, their tangent spaces at a point can
be identified with the orthogonal complements

TpHn = p⊥ and TvdS
n = v⊥.

It can be seen that hyperbolic space is a space-like submanifold of Minkowski space,
meaning the restriction of the Minkowski metric to Hn is positive definite. De Sitter
space is a Lorentzian submanifold of de Sitter space.

Note that if v is a unit tangent vector to p in hyperbolic space, then v ∈ UpHn ≤
TpHn ≤ Rn,1 and 〈v, v〉 = 1. Consequently, v ∈ dSn. Moreover, since 〈p, v〉 =
〈v, p〉 = 0, the point p ∈ Rn,1 is actually tangent to dSn at v. In summary, we have
a map

UHn → TdSn (p, v) 7→ (v, p).

5.1. Geometry of hyperbolic and de Sitter Space. The Levi-Civita connec-
tion of Rn,1 is the same as that of Rn+1 with the Euclidean metric. So, the geodesics
of Minkowski space are the straight lines; the geodesic through p in the direction
v is γ(t) = p + tv. For the coming computations, it will be useful to know the
second fundamental form of hyperbolic space as a submanifold of Minkowski space.
Note, though, that since Hn is space-like in Minkowski space, the metric restricted
to its normal bundle is negative definite. This means any unit normal vector field
will have length −1. Since TpHn = p⊥, it’s quick to see that p itself is a vector in
Rn,1 orthogonal to its tangent space. So we can define a unit normal vector field to
hyperbolic space by N(p) = p, which is just the inclusion. Similarly, the inclusion
of de Sitter space into Rn,1 provide a unit normal vector field for dSn.

Now, we can compute the second fundamental form of hyperbolic space by flow-
ing it in its normal direction using a variant of Theorem above. However, in that
Theorem we used the formula (f∗∇)uN = −dfp(Bu), which is for Riemannian sub-
manifolds of Riemannian manifolds. In the Riemannian submanifold of Lorentzian
manifolds case, the correct formula is (f∗∇)uN = dfp(Bu). This means that in this

case, d
dt It|t=0 = 2II.

Lemma. Let IIH be the second fundamental form of hyperbolic space in Rn,1, then

IIH(u,w) = 〈u,w〉

Proof. We use d
dt It|t=0 = 2II. Let gt be the geodesic flow of Rn,1, then since

the geodesics are straight lines, we have that gt(p,N(p)) = p + tN(p) = (1 + t)p.
Consequently, d(gt)p(v) = (1 + t)v.

IHt (u,w) =
1

2
〈(1 + t)u, (1 + t)w〉 =

1

2
(1 + t)2〈u,w〉.

Taking the derivative at t = 0 then gives the result. �

For de Sitter space, the original d
dt It|t=0 = −2II holds. A similar computation

then gives IIdS(u,w) = −〈u,w〉.

Proposition. The Gauss formula for hyperbolic space in Minkowski space is

∇̄XY = ∇H
XY + 〈X,Y 〉N

and for de Sitter space is

∇̄XY = ∇dSX Y − 〈X,Y 〉N.
where ∇̄ is the flat Levi-Civita connection of Rn,1 (and Rn+1).
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Using the Gauss formula in Hn, the geodesic equation becomes γ′′ = |γ′|2γ, an
equation in Rn,1. If we restrict to the unit tangent bundle, then the equation is
γ′′ = γ and this has solutions

γ(t) = cosh(t)γ(0) + sinh(t)γ′(0).

Hence, the geodesic flow in hyperbolic space is

gt(p, v) = cosh(t)p+ sinh(t)v.

We can now compute the derivative of the geodesic flow on hyperbolic space.

Theorem. Let gt : UHn → UHn be the geodesic flow. The derivative is given by

d(gt)(p,v)

(
x
y

)
=

(
cosh(t)x+ sinh(t)y + sinh(t)〈x, v〉p
sinh(t)x+ cosh(t)y − sinh(t)〈x, v〉v

)
,

with respect to the splitting T (TM) = H ⊕ V .

Proof. We know from Theorem that the derivative of the geodesic flow related to
Jacobi fields. In order to verify a proposed Jacobi field does in fact satisfy the
Jacobi equation we would need to compute the Riemann curvature endomorphism
of hyperbolic space. To avoid doing this, we compute the derivative of the geodesic
flow directly, as it is not too complicated in this model.

Let α(s) = (γ(s), V (s)) be a curve in UHn with α(0) = (p, v) and α′(0) = (x, y).
Recall this means that γ′(0) = x and DsV (0) = y. Recall also that y ⊥ v. Then
we compute

d(gt)(p,v)(x, y) =
d

ds
gt(α(s))

∣∣
s=0

=
d

ds
(cosh(t)γ(s) + sinh(t)V (s), sinh(t)γ(s) + cosh(t)V (s))|s=0

= (cosh(t)x+ sinh(t)V ′(0), Ds(sinh(t)γ(s) + cosh(t)V (s))(0)),

where the covariant derivative is along cosh(t)γ(s) + sinh(t)V (s) and V ′(0) is the
derivative of V : (−1, 1)→ Rn,1, which is equal to D̄sV (0).

Using the Gauss formula we have

V ′(0) = D̄sV (0) = DsV (0) + 〈γ′(0), V (0)〉γ(0) = y + 〈x, v〉p,

and so the first term of the derivative is cosh(t)x + sinh(t)y + sinh(t)〈x, v〉p. For
the second term, let β(s) = cosh(t)γ(s) + sinh(t)V (s) and δ(s) = sinh(t)γ(s) +
cosh(t)V (s), so that the covariant derivative we need to compute is Dsδ along β.
Then, again using the Gauss formula, we get Dsδ = D̄sδ − 〈β′, δ〉β. Each term is

D̄sδ = δ′(s) = sinh(t)γ′(s) + cosh(t)V ′(s),

〈β′, δ〉 = 〈cosh(t)γ′(s) + sinh(t)V ′(s), sinh(t)γ(s) + cosh(t)V (S)〉,
β(s) = cosh(t)γ(s) + sinh(t)V (s).

At s = 0 these become

D̄sδ(0) = δ′(0) = sinh(t)x+ cosh(t)V ′(0),

〈β′, δ〉 = 〈cosh(t)x+ sinh(t)V ′(0), sinh(t)p+ cosh(t)v〉,
β(s) = cosh(t)p+ sinh(t)v.
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Using V ′(0) = y + 〈x, v〉p, the fact that v, x, y ⊥ p and y ⊥ v, plugging everything
into the Gauss formula and then simplifying gives the second term and the result.

�

Notice that at t = 0, the geodesic flow is g0 = Id and we do get the correct
d(g0)(p,v)(x, y) = (x+ 0 + 0, 0 + y − 0) = (x, y).

In a similar way, we can compute the derivative of the map UHn → TdSn where
(p, v) 7→ (v, p).

Theorem. Let i : UHn → TdSn be given by i(p, v) = (v, p). Then with respect to
the splitting of the double tangent bundle of both Hn and dSn into horizontal and
vertical bundles (via the metrics induced from Minkowski space), we can write the
derivative as

di(p,v)

(
x
y

)
=

(
y + 〈x, v〉p
x− 〈x, v〉v

)
Proof. Let α(t) = (γ(t), V (t)) be a curve in UHn with α(0) = (p, v) and α′(0) =
(x, y). Recall this means that γ′(0) = x and DsV (0) = y. Recall also that y ⊥ v.
Then we compute

di(p,v)(x, y) =
d

dt
i(α(t))|t=0

=
d

dt
(V (t), γ(t))|s=0

= (V ′(0), DdS
t γ(0)),

where DdS is the covariant derivative with respect to de Sitter space and we think
of γ(t) as a vector field along V (t) in dSn. Recall from the proof of the previous
Theorem that V ′(0) = D̄tV (0) = y + 〈x, y〉p. Then, using de Sitter space’s Guass
formula we have

DdS
t γ(0) = D̄tγ(0) + 〈V ′(0), γ′(0)〉V (0)

= γ′(0) + 〈y + 〈x, v〉p, p〉v
= x− 〈x, v〉v

�

If we consider TdSn with its Sasaki metric, then we can compute the metric on
UHn induced from i.

Lemma. Let ĝdS be the Sasaki metric on TdSn. Then

i∗(ĝdS)((x, y), (u,w)) = 〈x, y〉 − 2〈x, v〉〈u, v〉+ 〈y, w〉
= ĝH((x, y), (u,w))− 2〈x, v〉〈u, v〉,

where ĝH is the Sasaki metric on UHn.

5.2. Surfaces in Hyperbolic Space. Suppose we have f : Σ → Hn and have a
unit normal lift F : Σ → UHn given by F (x) = (f(x), N(x)). Then composing F
with i : UHn → TdSn we get a dual surface in de Sitter space F ∗ = i◦F : Σ→ TdSn

and f∗ = π ◦ i ◦ F : Σ→ dSn.

Lemma. The derivative of F ∗ is given by

dF ∗x (u) =

(
−dfx(Bu)
dfx(u)

)
,
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and the derivative of f∗ is

df∗x(u) = −dfx(Bu).

Proof. Since F ∗ is the composition i ◦ F we have

dF ∗x (u) = di(f(x),N(x)) ◦ dFx(u) = di(f(x),N(x))(dfx(u),−dfx(Bu)).

Then

di(f(x),N(x))

(
dfx(u)
−dfx(Bu)

)
=

(
−dfx(Bu) + 〈dfx(u), N(x)〉p
dfx(u)− 〈dfx(u), N(x)〉N(x)

)
.

The result then follows from dfx ⊥ N(x). �

The induced metrics Î∗ = (F ∗)∗ĝdS and I∗ = (f∗)∗gdS can now be computed

Theorem. Let f : Σ → Hn be a map and F : Σ → UHn via F (x) = (f(x), N(x))

be a unit normal immersion. Then the metrics I∗ and Î∗ on Σ obtained by pulling
back the metric on dSn or the Sasaki metric on TdSn, respectively, are given by

Î∗ = I + III,

and

I∗ = III

Compare this with Theorem. We see that the induced metric Î from the unit
normal lift to UHn with its Sasaki metric is the same as the dual induced metric
Î∗. The induced metric on the dual surface Σ∗ = f∗ : Σ → dSn is given as the
third fundamental form of Σ. We can use this to determine when Σ∗ is immersed.

Proposition. The dual surface Σ∗ is immersed in dSn provided Σ is strictly convex
in Hn.

(CHECK CORRECT TERMINOLOGY)

Proof. The map f∗ : Σ→ dSn is an immersion when the induced metric I∗ = III is
positive definite (since df∗ takes values in space-like vectors). Now, since III(u,w) =
I(Bu,Bw) = I(B2u,w), the third fundamental form will be positive definite if B2

has strictly positive eigenvalues. As the eigenvalues of B2 are the square of the
eigenvalues of B (which are real), the third fundamental form will be positive
definite when the eigenvalues of B are non-zero. And this happens whenever II is
definite, meaning Σ is strictly convex (CHECK IF NEED POSITIVE TOO NOT
JUST POSITIVE DEFINITE). �

If F is a unit normal lift of f : Σ→ Hn, then composing with the geodesic flow
gives Ft = gt ◦ F to get parallel surfaces Σt = ft = π ◦ Ft in hyperbolic space
a distance t away from Σ. Define It = (ft)

∗gH as above. We can compute this
induced metric in terms of the geometry on Σ. Indeed, the derivative of Ft = gt ◦F
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can be computed via the chain rule as

d(Ft)x(u) = d(gt)(f(x),N(x)) ◦ dFx(u)

= d(gt)(f(x),N(x))

(
dfx(u)
−dfx(Bu)

)
=

(
cosh(t)dfx(u)− sinh(t)dfx(Bu) + sinh(t)〈dfx(u), N(x)〉p

sinh(t)dfx(u)− cosh(t)dfx(Bu)− sinh(t)〈dfx(u), N(x)〉N(x)

)

=

(
cosh(t)dfx(u)− sinh(t)dfx(Bu)

sinh(t)dfx(u)− cosh(t)dfx(Bu)

)

=

(
dfx(cosh(t)Id− sinh(t)B)u

dfx(sinh(t)Id− cosh(t)B)u

)
Let At = cosh(t)Id − sinh(t)B, then the derivative of ft is d(ft)x(u) = dfx(At(u))
or

d(ft)x = dfx ◦At.
Consequently,

Theorem. Let f : Σ → Hn be an immersion with unit normal vector field N and
shape operator B. Define ft(x) = π ◦ gt(f(x), N(x)), then the image of ft is a
surface a distance t away from Σ and has in induced metric

It(u,w) = I((cosh(t)Id− sinh(t)B)u, (cosh(t)Id− sinh(t)B)w)

and shape operator

Bt = −(cosh(t)Id− sinh(t)B)−1(sinh(t)Id+ cosh(t)B).

Proof. The first claim follows immediately from the definition of a pullback metric
along with the formula for d(ft)x. For the moment, let f : Σ → Hn be any
immersion with unit normal vector field NΣ. Then the Gauss formula says

(f∗∇H)Xdf(Y ) = df(∇Σ
XY ) + IIΣ(X,Y )NΣ.

From the Gauss equation for hyperbolic space in Minkowski space

∇̄XY = ∇H
XY + 〈X,Y 〉NH,

we can take the pullback to get

(f∗∇̄)XY = (f∗∇H)XY + 〈X,Y 〉(NH ◦ f)

where Y is now a section of f∗THn. In the case where Y = NΣ, we see

(f∗∇H)uN
Σ = (f∗∇̄)uN

Σ − 〈u,NΣ〉f = (f∗∇̄)uN
Σ

since NΣ is orthogonal to u. The Weingarten equation then says dfx ◦ Bu =
−(f∗∇̄)uN

Σ. Choose a path γ in Σ such that γ(0) = x and γ′(0) = u. Then the
Weingarten equation becomes

dfx ◦Bu = −D̄tN(0),

the covariant derivative being taken along γ.
Now, specialize to ft : Σ → Hn with unit normal Nt = ∂t(cosh(t)f(x) +

sinh(t)N(x)) = cosh(t)N(x) + sinh(t)f(x). From the above, we have for a simi-
lar path γ(s)

d(ft)x ◦Btu = −(f∗t ∇H)uNt = −D̄sNt(0).
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It is straight forward to compute

D̄sNt = cosh(t)D̄sN(0) + sinh(t)D̄sf(γ(s))(0)

= cosh(t)(dfx ◦Bu) + sinh(t)dfx(u)

= dfx(sinh(t)Id+ cosh(t)B)u.

Recall that d(ft)x = dfx ◦At. We have

dfx ◦At ◦Btu = −dfx(sinh(t)Id+ cosh(t)B)u.

Since f is an immersion, dfx is injective and

At ◦Btu = −(sinh(t)Id+ cosh(t)B)u =⇒ Btu = −A−1
t (sinh(t)Id+ cosh(t)B)u,

and the result follows. �
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